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We examine the first-passage-time problem for passive tracer transport in flow through porous media.
The simplified model used [G. Matheron and G. de Marsily, Water Resources Res. 16, 901 (1980)] per-
tains especially to groundwater flow, and assumes that the medium is fully stratified. Transport normal
to the layering is governed by diffusion alone; transport parallel to the layering is governed by both
diffusion and convection. The fluid velocity varies randomly from layer to layer. The region of interest
is vertically infinite but horizontally finite (of length 2L), with a source inside and sinks on the boun-
daries. We average a path-integral expression for the Green function over velocity fluctuations and ap-
proximate the result in the limits of long distance and long time via Feynman’s variational method. We
calculate the exit time distribution and the mean first passage time. The latter is proportional to L*/3,

consistent with previous work.

PACS number(s): 47.55.Mh, 05.40.+j

I. INTRODUCTION

Transport of a passive tracer through a porous medium
by a fluid is a problem common to several fields of
applied physics, including filtration processes and
groundwater hydrology [1]. The problem is often well
understood over regions typically of the order of centime-
ters, where the medium is treated as a homogeneous con-
tinuum with certain bulk properties, and where laws
governing transport through the medium are known.
The problem is not so well understood over regions typi-
cally of the order of meters, where we do not know the
large-scale transport laws. To find these laws, we treat a
large-scale region as an aggregation of smaller subre-
gions, i.e., a heterogeneous continuum. Transport
through the large region can be described by a local ver-
sion of the smaller-scale transport equation. Averaging
over the heterogeneities results in an equivalent homo-
geneous description good over large length scales. The
heterogeneities are modeled as random functions of posi-
tion. It is usually assumed that the central limit theorem
(CLT) holds, i.e., that if in the limit of long times a tracer
particle samples a statistically representative set of the
fluctuating values, then the distribution of particle dis-
placements is Gaussian, and the particle’s mean square
displacement increases as the first power of time ¢
(diffusion) [2]. If the values sampled by the tracer are not
representative, then the distribution is not generally
Gaussian and the mean square displacement increases as
t% where a may be less than 1 (subdiffusion) or greater
than 1 (superdiffusion) [3,4]. The most common way of
obtaining an effective averaged description is through a
perturbation - expansion in powers of the fluctuations.
The perturbation approach has proven to be highly suc-
cessful, but it has its limitations, two of the more impor-
tant being that the calculations necessary for higher-
order terms are very difficult, and that the applicability of
the perturbation approach is limited to systems with
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weak fluctuations.

Interest in groundwater flow leads quite naturally to
interest in flow through layered media, given that rock
and sediment are so often found to be layered. Since ve-
locity of flow can be obtained as a function of permeabili-
ty from Darcy’s law and the incompressibility condition,
fluctuations in permeability such as occur in layered
media will induce fluctuations in velocity. These latter,
in turn, will induce enhanced dispersion of a passive
tracer released into the flow. Generally, theoretical in-
vestigations assume that the medium is of infinite extent,
and consider the mean tracer concentration to be the
prime object of interest. This is mathematically con-
venient in that one is not obliged to work with boun-
daries which are a finite distance from the source, but it is
unusual for an experiment to be so arranged. A more
common experimental practice is to inject tracer into the
medium at one point, and then to measure the time inter-
val necessary for the tracer to reach the boundary of the
medium. This ““first-passage-time’’ problem has been well
studied in one dimension [5,2,6], and is now being studied
in more complex media [7].

We will examine the first-passage-time problem for
flow through a layered medium. Transport normal to the
layering is governed by diffusion; transport parallel to the
velocity is governed by both diffusion and convection,
with the velocity a random function of transverse posi-
tion; and transport parallel to the layering but normal to
the velocity is simple diffusion, which we shall ignore.
The dispersion tensor is known to be anisotropic, with
principal directions parallel to and normal to flow; how-
ever, since convective transport dominates diffusive
transport parallel to bulk flow in the limit of long times,
we can take the parallel and transverse dispersion
coefficients to be numerically equal. This will simplify
the equations somewhat. This model is of theoretical in-
terest because the average concentration profile in un-
bounded space is superdiffusive [8]. The anomalous
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behavior arises from the interplay between convection
and diffusion, which induces long range time correlations
in the velocity fluctuations [9,10,4]; while more and more
of the velocity distribution is sampled as time increases,
the distribution is never sampled completely, and the
sampled velocity values are not independent. We will as-
sume that the mean flow is zero (center of mass frame),
that the region of interest is bounded by absorbing walls
(sinks) oriented normal to the flow, and that the tracer is
released halfway between the two walls. While the tracer
has a finite distance it can travel parallel to the flow, it
also has an indefinitely large distance it can travel normal
to the flow, and an indefinitely large number of layers it
can visit. The usual experimental apparatus is not actual-
ly of infinite thickness, but it can be effectively so if the
characteristic time necessary to leave the system by mov-
ing parallel to the flow is much less than the characteris-
tic time necessary to leave the system by diffusing normal
to the flow.

We use Feynman’s variational method [11,12] to ap-
proximate the average Green function; from the result we
calculate the exit time distribution and the mean first pas-
sage time. Given our assumptions, the exit time distribu-
tion is proportional to (¢!/2/L?)exp{—yt*/?/L?}, with
v some constant dependent on problem parameters; it
follows from this that the mean first passage time is pro-
portional to L*/3.

II. PROBLEM

The mass concentration of tracer in the fluid c¢(r,?) is
governed by a convection-diffusion equation (CDE)

lg;df-u(r)-V”DV2 c(r,t)=0. (1)

We take the layering to be parallel to X. If we apply a
pressure gradient parallel to the layering, then the veloci-
ty u(r) is parallel to % and a random function of y alone,
u(r)=u(y )X, which follows from Darcy’s law [1], supple-
mented by an assumption that the permeability tensor is
diagonal. We assume that the velocity fluctuations can
be characterized as Gaussian white noise, with the statis-
tics of u (y) completely determined by (u(y))=0 and
(u(lu(y’))=p(ly—y'l)=0%8(y —y’). D is the unper-
turbed diffusion coefficient. The boundary conditions are
c(r,t)=0 at x==xL, and as y—>t o (see Fig. 1). The
Green function G(r,t;ry,1,) for Eq. (1), defined by

§;+u<r)-v—pv2 G, 150, 10)=8(r—10)8(t —1,) ,
)

is no more than the probability that a tracer particle
starting at (ry,?,) will end up at (r,z). The exit time dis-
tribution p(t,r(,¢,) is defined as the probability per unit
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FIG. 1. Geometry of layered medium for first-passage-time
problem.

time that the particle leaves the region of interest at time
t, and is given in terms of the Green function by

_ d +L + o0 .
p(t,ro,zo)——gfd dx f‘w dy G(r,t;10t0) . (3)

The mean first passage time 7T'(rg) is defined as

T(r,)= ft+°°dt(t—t0)p(t,ro,to) . @)
0

One can obtain an equation for T'(r) from Eq. (2) [6]:
DV?T(r)+u(r)-VT(r)+1=0 . 5

Usually, Eq. (5) would be preferred to Eq. (1), for the ob-
vious reasons of fewer variables and fewer derivatives,
but we will not make use of Eq. (5). Our unperturbed sys-
tem is governed by pure diffusion in the x direction, so
that T, ~L2% For the averaged system, the simplest
naive argument [13] gives (7 )~L*?, while a more
refined argument based on crossover scaling due to
Redner [14] gives (T )~(L InL)*3. Also, we are in-
terested in large L. It is difficult to see how one might
perturb about Ty~ L2, and reach (T) ~L*/ for large L,
as the unperturbed quantity would dominate the expected
averaged quantity in the parameter range of interest.
Furthermore, from a perturbation expansion, one can
readily see that the first order correction scales as L 3.
This indicates that perturbative methods are best limited
to cases for which L is small and the fluctuations are
weak. Though we therefore desire a nonperturbative cal-
culation, we do not know of a nonperturbative technique
which can be applied immediately to Eq. (5) [15]. On the
other hand, such techniques do exist for Eq. (1).

Since the variational method is based on path integrals,
the first task is to obtain a path-integral version of the
problem. To start, we need the solution to Eq. (2) in the
special case that the velocity is a nonzero constant u.
This solution can be obtained using images, as is familiar
from elementary electrostatics:
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G(rp,ty;Totg)=

Yn—Yo ) ]

47TD(tN—t0)ex _4D(tN_t0)

[—1+(—1)"Ix,

% + ( l)n uO
b exp |7,

nL +
n=-—o0 2
— e _(xy—2nL —(—1)xg—ug(ty — 1) ©)
4D(tN_t()) N 0 O\¢N 0 .
This can be rewritten using the integral identity
1 22 _ +°°£E 2., s
o |~ |~ el "
so that
1 (yy—¥0)?
G(ry,tN;To )= e -
NENTO R0 4D (2 — 1)) XP{ 4D(ty—t,)
todp T, ug [—1+(—1)"]x, _ _ 5
Xf_w Trn=z—oo( l)expl—D— nL ) D(ty—ty)p
+lp[xN-—2nL"‘(—'1)"x0—u0(tN“t0)]] . (8)

This is sometimes called the momentum representation of Eq. (6). To obtain the concentration with fluctuating param-
eters, we divide the time interval into N equal segments, of length At =(¢y —¢,)/N. Then any particular path r(z) from
(rg,2o) to (ry,2y) can be approximated by N +1 points (r, =r(t; ), ¢, =t,+kAt), where 0=k <N. The probability of
going from (r,t;) to (4,2 4+;) can be found from Eq. (8) by replacing N—k +1, 0—k, p—p;, n—n;, and
ug—u(y;4+1). We choose u(y; ;) so that the path-integral expression we eventually obtain obeys Eq. (2) (cf. Appen-
dix). The probability of taking a particular path is the product of the probabilities of taking each link in the path, and

the total probability of going from (r,#,) to (ry,?y) is obtained by summing this last quantity over all possible paths.
The result is

( N [axya N— fdpkN~1 e .
G(ry,ty;iToty)= x;dy; (=1)
N> IN3Tos Bo jl;[l j yjkl;Io 2 1I=I(>n,=2—w (4rDA)N?

N1 (ym +1 7 Vm )2
xe"p[~ DI IN

m =0

N u(pp, )

D

2

m=0

—DAtp? +ip,,[x,, +1—2n,L —(—1 )n"‘xm

—u(ym+1)At]] ] . )

We use the momentum representation because the function in the exponent is linear in the velocity, which makes
averaging much easier. Averaging over fluctuations in velocity [16] gives
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(G(ry,ty;Torto))
=fDu exp —%fdy dy'p Yy —y'Du(@u(y’) |G(ry,ty;reto)
dpy N-1 4= 1
= dx d —_— P
H i y’ f Ho,,,; R rererZ
N1 (ym+1—ym )2
Xexpi— 3,
[ =y  4DAt
N—1 \ ;
+ 3 {—DAw,, +ip,[xp+1—2n,L—(—1)"x, 1}
=0
1SS | nL | 14D ™l A
2_0 qua Ym+17"Vg+1 D D —ip,, At
n,L [—1+(—1)"]x
x| 2 L— :
D + 2D lqut
(10)

Although this expression contains factors of (—1)” and i,
it is nonetheless real and positive, since it is a probability.
Furthermore, given our assumptions about the velocity
fluctuations, Eq. (10) is an exact expression. We will use
the variational method to approximate the remaining in-
tegrals.

III. VARTIATIONAL CALCULATION

Suppose we have a path-integral expression for which
we cannot do the integrals, e~ "= [ Dxe 5, where S is
broadly analogous to an action. Suppose further that we
also have S 4, in some sense an ap%onmation of S, for
which we can do the integrals e f Dxe 4. We

will call S, a “test action.” We define the average of a
functional F as

_ f DxFe *

(F), = fDxe_SA (11

We first rewrite our original path-integral expression
Y [fDxe—S‘ ] [fDx—(S—S")e_S” ]
[ f Dxe 4 ]
Ee—WA(e—(s—SA)>A ‘ (12)

Then, using a standard convexity inequality, we get

<e—(s—sA)>A2 —(5—5,) 4 (13)
and from Eqgs. (12) and (13) it follows that

WSW, +(S—S ) =W . (14)
We thus end up with an upper bound for W, or

equivalently, a lower bound for e ~% [17]. An equation

[

analogous to (14) can be obtained for the momentum rep-
resentation as well [12]. The bound can be optimized
with respect to variations of any free parameters in W 4.
For our problem, e %= [dyy(G(ry,ty;1r0,t,)), with
(G(ry,ty;Tp o)) given by (10). We integrate over yy be-
cause we are interested in when the particle leaves the in-
terval, but not where. The choice of S, depends on two
important considerations, one being whether or not we
can do the integrals, and the other being how well the re-
sulting e ~ “ fits our expectation of the tracer particle’s
average behavior. Now, the stratified system has been
thoroughly investigated in free space [3,8,10,18]: the first
two moments of x are given by {(x(t))=0 and

- {x%t)) ~t% with a=3/2, and the shape of the distribu-

tion itself is known for certain limiting cases. If x /¢%/? is
small, then

2
(e ¥")~exp | —B, t:/z ] (15a)
and if x /t*/? is large, then
4/3
(e ™ W)~exp | —B, t:ﬂ ] (15b)

Since we require a calculation that can be done analyti-
cally, we choose S 4 so that e ~ * is a Gaussian distribu-
tion. Although this does not agree with the limiting case
of Eq. (15b), it does agree with the limiting case of Eq.
(15a), so our choice is not only necessary in practice, but
reasonable as well. We can easily incorporate our
knowledge of the first two moments of x in §,. Al-
though a is known for the free space problem, we can
leave it unspecified in S, assuming only that @ > 1. This
will allow us to frame the first-passage-time calculation a
little more generally. We note that
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1 Cx—xg)? J l—-—aEt"‘ Nl

G'(x,t;xq,t9)= exp G'(x,t;x0,t0)=6(x —x4)8(t —1t,)

[4mE(t*—1t§)]'/? 4E(t"‘—t0 ax?
(16) 17
satisfies and that
J
1 (xy41—xy)
G'(xXyyptnsXorty)= fde (rE(E . —15)] exp ‘—m G'(xpy,tyN;X0,t0) (18)

for free space. Therefore, imposing the boundary conditions of the first-passage-time problem at x ==+L, and working
from analogy with e ¥ we will take

2
A— PkN + _ _—_1——_ _N_l (ym+l——ym)
fdyN H fdx Ay H f‘ HO"IE (=1 (amD Az 72 P m2=0 4D At
N—1
Xexp{ 3 [—E(ty i —te)ps
m =0

'HPm{xm+1_2nmL_(—1)nmxm}]] . (19)

At this point E and a are undetermined variational parameters. From these definitions, we can see that

NZUNZL n,L [—1+(—1)""x,
S—S Epm[DAt—E(tm_H—t,ﬁ)]—%z D 08Py 1= Yg+1) + —ip,, At
m =0 m=0 ¢g=0 D 2D
[—1+(—1)")x
g g _ .
D + D ip At (20)
After some work, we obtain
_ + o0 xy—2nL —(—1)"x,]
Wa L 7 2 (—1)"xp _ L o] 21
[477E(tN t§)1V =2 4E(tg—1t§)
and
e "i(s—s ):[D(tN to)—E(tf—18)+40(t3/*—13/?)/3(4nD)" ]
4 2E(t%—1t8)[4mE(tg—1§)]'2
+» xy—2nL —(—1)"x,]? xy—2nL —(—1)"x,]?
X S (—1yexp _ Ixw o] 1_[ N 0l 22)
ne o 4E(t5—1§) 2E(tg—1t§)

We have in Eq. (14) an upper bound for W. We expect the bound to be most reliable at the distribution’s point of max-
imum probability, xy =x, as this is where the most representative tracer particles still in the interval would be. Since
we have assumed that the particle starts exactly between the two absorbing walls, x,=0. We take t,=0 with no loss of
generality, and set 1y =t. The appropriate quantities become

_WA 1 + o0 n2L2
e _ (—1)"xp | — (23)
~ (4nEt) :2_0,, p[ Et°
and
-w, 40'2t3/2 1 + o0 n2L2 2n2L2
e (§—S,4)— |Dt—Et*+ (—1)"%xp {— 24)
47 [ 347DV | 2Bt anEr e, 2 Pl B Et°
The values of the free parameters are fixed by setting (3 /3E )W =0, which reduces to
2,372
Et*=Dt + 221 (25)

3(4mD )12
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In other words, the optimum value of e~ “4{(S—S,) is
zero. In the long-time limit, Et®*—402t3/2/3(47D)'?,
so E—40?/3(4wD)!'/? and a—3. It is interesting to
note here that a first order perturbation expansion in
powers of the fluctuations corresponds to Et*=Dt in
Egs. (23) to (25). Thus the first order perturbative result
is itself a lower bound, and not generally the optimal one
[11].

Setting as before x,=0, t,=0, xy=x, and ty=t, and
integrating over the final vertical position, the variational
bound for the average concentration becomes

, _ 1
<G (x’t)>_ (477'Et3/2)1/2
+ 2
n (x —2nL)
X =z__ ("l)exp{‘-—TE—p—/i“— (26)

with E given above. We can obtain a conven-
ient form for the exit time distribution p(¢)
=—9/3t [ *Ldx(G'(x,t)) [cf. Eq. (3)] by using the
equation of motion for {G'(x,t)), Eq. (17):

p)=["Fax —%(G’(x,t))

= f +de 27)
—L

Note that the exit time distribution is essentially the total
current out of the region of interest. We find with a little
rewriting that

3L 1

—aEt (G x,1))
ox? ’

P(t)z‘zTM,”Ets/z)vz
= LY(1—2n)? ]
X 3 (=D)'(1—2n)exp{———>—
n— 4Et3/2
(28)
We can compute the sum
+ L21_2 2
> (—1)n(1—2n)expl—-—i—l4:7372ﬂ—} (29)
n=-—oo

by approximating it as an integral, then, either by comp-
leting the square or by the method of steepest descent.
The sum becomes

2E372 P E3?
) - (30)
L 4L
This result depends on the assumption that

m2Et3/2/8L2>> 1, for if 8L2/m?Et3/?>>1, we expect the
sum would be dominated by its largest term, n =0. In
this approximation,

o2t V/24172 [

p(t)— (31

- 6L2D1/2

0'2t3/21T3/2
D 1/2L2

This is not a simple exponential, as occurs in the case of
two layers [7]. The mean first passage time

2723
+ o
T)= t
(T)=["“dt1p(r)
65/301/3L4/3 +oo
——»—W.fo dt t3/2exp{—t3/2} (32)

is proportional to L*/3

ment [13].

, as predicted by the naive argu-

IV. SUMMARY

We have used Feynman’s variational method to ap-
proximate the Green function corresponding to
convective-diffusive transport through a layered medium
with velocity parallel to the layering and absorbing boun-
daries normal to the velocity. From this Green function,
we have obtained a variational estimate of the exit time
distribution and the mean first passage time for a test par-
ticle starting between the boundaries. Since

e ">e W’“, our method provides a lower bound for the
Green function, and thus a lower bound for the mean first
passage time [19]. In the limit of large L, our result of
{(T)~L*"? is therefore consistent with Redner’s result
(T)~(L InL)*3 [14]. We expect our exit time distribu-
tion will give increasingly unsatisfactory results for
higher moments of the first passage time, since our varia-
tional bound for the average Green function is Gaussian,
while the known tail of the average Green function [Eq.
(15b)] has broader wings than a Gaussian, and the wings
of a distribution more strongly influence its higher mo-
ments.

A very interesting aspect of our variational result for
the Green function is that one would get the same result
by a direct application of King’s partial-summation per-
turbation approach [16]. As our calculation is somewhat
more involved than King’s, one could reasonably wonder
if the extra trouble is necessary. Perhaps it is not strictly
necessary, but it does give us an alternative way of think-
ing about what we do to get the result. King’s method
amounts to the summation of a particularly convenient
subset of terms of the full perturbation expansion.
Feynman’s variational method, on the other hand, at-
tempts to find the Gaussian distribution which is a best
lower bound to the actual Green function. These two
methods give the same result for this problem because
motion transverse to the layering is not affected by con-
vection, leaving all the interesting enhanced dispersion to
take place in one dimension. The story would be different
if convection were not parallel to the layering; the inter-
play between convection and diffusion would no longer
induce long-term correlations in time for fluctuations in
the direction of flow, and the overall effective behavior
would be normal diffusion with enhanced coefficients
both parallel and transverse to the flow [8]. Of course,
strictly speaking, the perturbation method is supposed to
be limited to situations for which the perturbed state and
the averaged state are close in some sense to the unper-
turbed state. For this problem, then, the perturbation ex-
pansion would be expected to fail at large ¢, even as this is
the parameter range of interest.
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APPENDIX i+u0-v—V-D0-V Golr—ro,t—1;)

Defining path integrals with position-dependent pa- a
rameters can be a tricky business. The discussion in our =8(r—ry)8(t—1y) (A2)
previous paper [12] was somewhat flawed, and we correct
matters here. We consider the incompressible CDE with and is no more than the probability that a tracer particle
p.ositi_or‘x-dependent velocity and diffusion, defined for  gtarting at (ro,2o) will end up at (r,7). This probability is
simplicity over all space: in turn the sum over all possible paths of the probability

5 that the tracer particle will take a particular path from
a—+u(r)-V—V'D(r)-V c(r,t)=0. (A1) (rg,2y) to (r,t). Equation (A2) has the following path-
¢ integral solution [20-22]:

ety )=ry 1

D,

dr dr
—Igty—tg)= 2 _ ar _
Golry —To,ty —1o) fr(t0)=r0 dr o dr Yo

t
Drexp [_%ftoNdT

I . (A3)

It is useful to see how (A3) is obtained. Suppose we wish to know the probability that a tracer particle will follow a
given path r(¢) from (ro,2,) to (ry,ty). We divide the time interval into N equal segments, of length At =(ty—t,)/N,
and approximate the path by N +1 points (r, =r(¢;), t, =t,+kAt), where 0=k <N. The probability p(k —1,k) of
going from (r; _,¢; _;) to (1), ;) can be obtained from (A2):

1 Ar

exp | — T " Tp—1
[47At]*/?[detD,]'"? P 4

At

plk—1,k)= U, u,

S .
D, At

] (A4)

and the probability for taking the entire path is [[¥~,;0(k —1,k). To get the Green function, we integrate this over all
intermediate positions:

- 1
Golry —r1o,ty —to)= fdrl T fdrN—l (4wAt N[ detD, |V /2
At X T 1 | Tk~ T
Xexp|—— — =y | |————u . (A5)
4 ,El At °| D, At 0 }

This is the proper way to interpret (A3). We can easily show that the Green function of Eq. (A5) obeys (A2) to first or-
der in At, assuming only that the irregularity is relatively well behaved [21]. For simplicity let us set r,=0 and t,=0.
Then Gy(ry 11,2y +1) can clearly be written as

1
Gy(r ,t )= | dr
oy ein )= f ¥ (4mA1)¥*(detD,)' 2
At | IN+17 TN 1 IN+17 Iy
Xexp —*4— T———uo FO T—uo G(I'N,tN). (A6)
Now weset ry . |=1,Ty, | —Iy=y, ty =t. With these, (A6) can be rewritten

Go(r,t+A1)= [dy 1 expl—BL | Xyl LYy =y, . (A7)

(4mAt)3/%(detDy)!? 4 | At D, | At

If the irregularity of the motion is relatively well behaved, then y will be small, and Gy(r—y,t) can be expanded in a
Taylor series around y=0. Likewise G(r,7z+At) can be expanded in a Taylor series around At=0. Performing all
necessary computations, (A7) becomes

Go(r,t)+At%G0(r,t)+0((At 2)=G,(r,1)—Atuy-VGy(r,t)+AtV-Dy-VG,(r,t)+O((A1)?) , (A8)

from which it follows that the Green function of Eq. (A5) obeys Eq. (A2) to first order in At.
Things become a bit more complicated if we wish to allow for space-dependent velocities and dispersion tensors. The
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Green function for Eq. (A1), G(r,ry,t —t,) is defined by
—E%+u(r)-V—V-D(r)-V Gr,14t —14)=8(r—10)8(¢ — 1) . (A9)
We cannot simply go by analogy with the constant-parameter case, and suppose the solution to be
ty)=ry 7% dr 1 dr
— = —1 — . ===
G(ry, oty —to) fmo)=r0 Drexp { 1 fto dr| oy mun) | | () ] (A10)
because using the method just above, (A 10) can be shown to obey
%G(r,ro,t-t0)+u(r>-VG<r,r0,t 4)=D, (r) G(r Tort—15) (A11)
to first order in Az. But
(i) J 2] G
9 ()2 = |2 —+D,(r)— Al2
or, D'(’)ar,.G [ariD( r) ar, +D;(r ) i2 (no sum) (A12)
suggests that
_ T s dr 1 dr
G(rN,ro,tN—to)—-fmo)=ro Drexp [_TLO dr E*u(r)-*—v(r) B_G.)_ s u(r)+v(r) ] , (A13)
where
vi(r)EiDi(r) (no sum) (A14)

ar

i

will obey (A9). We can show this to be so, using the method outlined above. The proper way to interpret (A13) would

then be
1

1

Glry,toty—to)= [dr, - -

l'k—l'

At N
Xexp vy 2

We use (r, —r; _;)/At in Eq. (A15) for the velocity of the
particle as it moves from r; _, to r;; although this is the
natural and obvious choice to make, it is not the only
possible choice. Other choices differ from ours by terms
of order At, and change the observations which follow.
For cases of varying D(r) and u(r), our selection of
D(r, ) and u(r; ) for their values respectively as the parti-
cle moves from r; _; to r; is most convenient. With a
minor change in the drift velocity, we obtain a path-

d _ P
Jary "(4mwAt)¥2[detD(r,)]!"2

—u(rk )+V(rk ) ] N

(47At)*/*[detD(ry)]'"?

T —Tr
At

1
D(rk)' u(rkH-v(rk)J ] .

(A15)

[

integral expression which obeys the proper equation of
motion, as shown above. Other selections for D(r), such
as D(r; ), D(3[rx_+r]), or L[D(r,)+D(r,_,)],
define path-integral expressions which do not obey the
proper equation of motion, and which cannot be made to
do so by a simple redefinition of the drift velocity. A
similar observation can be made about other selections
for u(r).
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